Abstract
Flexible array transducers can adapt to patient-specific geometries during real-time ultrasound (US) image-guided therapy monitoring. This makes the system radiation-free and less user-dependency. Precise estimation of the flexible transducer's geometry is crucial for the delay-and-sum (DAS) beamforming algorithm to reconstruct B-mode US images. The primary innovation of this research is to build a system named FLexible transducer with EXternal tracking (FLEX) to estimate the position of each element of the flexible transducer and reconstruct precise US images. FLEX utilizes customized optical markers and a tracker to monitor the probe's geometry, employing a polygon fitting algorithm to estimate the position and azimuth angle of each transducer element. Subsequently, the traditional DAS algorithm processes the delay estimation from the tracked element position, reconstructing US images from radio-frequency (RF) channel data. The proposed method underwent evaluation on phantoms and cadaveric specimens, demonstrating its clinical feasibility. Deviations in tracked probe geometry compared to ground truth were minimal, measuring 0.50 ± 0.29 mm for the CIRS phantom, 0.54 ± 0.35 mm for the deformable phantom, and 0.36 ± 0.24 mm on the cadaveric specimen. Reconstructing the US image using tracked probe geometry significantly outperformed the untracked geometry, as indicated by a Dice score of 95.1 ± 3.3% versus 62.3 ± 9.2% for the CIRS phantom. The proposed method achieved high accuracy (<0.5 mm error) in tracking the element position for various random curvatures applicable for clinical deployment. The evaluation results show that the radiation-free proposed method can effectively reconstruct US images and assist in monitoring image-guided therapy with minimal user dependency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.