Abstract
With the development of smart devices, the computing capabilities of portable end devices such as mobile phones have been greatly enhanced. Meanwhile, traditional cloud computing faces great challenges caused by privacy-leakage and time-delay problems, there is a trend to push models down to edges and end devices. However, due to the limitation of computing resource, it is difficult for end devices to complete complex computing tasks alone. Therefore, this article divides the model into two parts and deploys them on multiple end devices and edges, respectively. Meanwhile, an early exit is set to reduce computing resource overhead, forming a hierarchical distributed architecture. In order to enable the distributed model to continuously evolve by using new data generated by end devices, we comprehensively consider various data distributions on end devices and edges, proposing a hierarchical federated learning framework FLEE , which can realize dynamical updates of models without redeploying them. Through image and sentence classification experiments, we verify that it can improve model performances under all kinds of data distributions, and prove that compared with other frameworks, the models trained by FLEE consume less global computing resource in the inference stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.