Abstract
We propose a flexible low complexity design (FLCD) of coded distributed computing (CDC) with empirical evaluation on Amazon Elastic Compute Cloud (Amazon EC2). CDC can expedite MapReduce like computation by trading increased map computations to reduce communication load and shuffle time. A main novelty of FLCD is to utilize the design freedom in defining map and reduce functions to develop asymptotic homogeneous systems to support varying intermediate values (IV) sizes under a general MapReduce framework. Compared to existing designs with constant IV sizes, FLCD offers greater flexibility in adapting to network parameters and significantly reduces the implementation complexity by requiring fewer input files and shuffle groups. The FLCD scheme is the first proposed low-complexity CDC design that can operate on a network with an arbitrary number of nodes and computation load. We perform empirical evaluations of the FLCD by executing the TeraSort algorithm on an Amazon EC2 cluster. This is the first time that theoretical predictions of the CDC shuffle time are validated by empirical evaluations. The evaluations demonstrate a 2.0 to 4.24 speedup compared to conventional uncoded MapReduce, a 12% to 52% reduction in total time, and a wider range of operating network parameters compared to existing CDC schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.