Abstract

This study aimed to extract oleosomes (OLs) from flaxseeds and assess their response to environmental conditions during storage (pH and ionic strengths), shear and tribological stresses. Our hypothesis was that a shear-induced instability will enable OLs to exhibit favourable lubrication performance. During storage, OLs exhibited resistance to droplet aggregation for up to 6 weeks owing to the proteins (3.5–152.8 kDa molecular weights) stabilizing the OL droplets. However, presence of divalent (Ca2+) ions induced destabilization with marked increase in droplet size (p < 0.05). OLs demonstrated shear thinning behaviour, displaying an order of magnitude higher viscosity than flaxseed oil (FSO) at low shear rates (<10 s−1). Strikingly, OLs mirrored the frictional profile of FSO regardless of entrainment speeds, due to droplet coalescence, validating the hypothesis. Such kinetic stability with shear-induced coalescing feature of OLs hold strong potential for future plant-based food development, particularly in achieving desired mouthfeel characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call