Abstract

The present study focused on the formulation of mucoadhesive bilayer composite films for the treatment of periodontitis and evaluation of their physicochemical properties. The solvent casting technique was used to prepare films. The primary layer (D) was prepared with flaxseed and hydroxypropyl methylcellulose composite to sustain the release of doxycycline hyclate. The second layer (S) comprised sodium alginate and polyvinyl alcohol composite for faster release of clove oil. Both layers were combined to generate the bilayer film (B). All formulations were characterized further to obtain an optimized formulation. Attenuated total reflection-Fourier transform infrared radiation results showed intactness of drug and clove oil in the presence of excipients. The pH of the films was compatible with the periodontal cavity and the thickness was suitable for inserting into the cavity. The immediate release layer showed faster disintegration and swelling. The content of clove oil was above 80%. The rate of swelling of the primary layer was slow and drug content complied with the United States Pharmacopoeia. Scanning electron microscope analysis revealed intact, non-porous and smooth films. Films exhibited better mechanical strength and bioadhesiveness. Clove oil was released from the immediate release layer within 10 min, and doxycycline hyclate release was retarded to a minimum of up to 8 h in the primary layer as well as the bilayer. Formulation also had a significant effect on both Escherichia coli and Staphylococcus aureus. In the current study, bilayers were successfully prepared and characterized. The optimized formulation can be effectively used for the treatment of periodontitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.