Abstract

The phase structure of flavoured N=2 SYM on a three sphere in an external magnetic field is studied. The pairing effect of the magnetic field competes with the dissociating effect of the Casimir free energy, leading to an interesting phase structure of confined and deconfined phases separated by a critical curve of a first order quantum phase transition. At vanishing magnetic field the phase transition is of a third order. For sufficiently strong magnetic field, the only stable phase is the confined phase and magnetic catalysis of chiral symmetry breaking is realized. The meson spectra of the theory exhibit Zeeman splitting and level crossing and feature a finite jump at the phase transition between the confined and deconfined phases. At strong magnetic field the ground state has a massless mode corresponding to the Goldstone boson associated with the spontaneously broken U(1) R-symmetry analogous to the eta' meson in QCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call