Abstract
Nitric oxide (NO) is a poison, and organisms employ diverse systems to protect against its harmful effects. In Escherichia coli, ygaA encodes a transcription regulator (b2709) controlling anaerobic NO reduction and detoxification. Adjacent to ygaA and oppositely transcribed are ygaK (encoding a flavorubredoxin (flavoRb) (b2710) with a NO-binding non-heme diiron center) and ygbD (encoding a NADH:(flavo)Rb oxidoreductase (b2711)), which function in NO reduction and detoxification. Mutation of either ygaA or ygaK eliminated inducible anaerobic NO metabolism, whereas ygbD disruption partly impaired the activity. NO-sensitive [4Fe-4S] (de)hydratases, including the Krebs cycle aconitase and the Entner-Doudoroff pathway 6-phosphogluconate dehydratase, were more susceptible to inactivation in ygaK or ygaA mutants than in the parental strain, and these metabolic poisonings were associated with conditional growth inhibitions. flavoRb (NO reductase) and flavohemoglobin (NO dioxygenase) maximally metabolized and detoxified NO in anaerobic and aerobic E. coli, respectively, whereas both enzymes scavenged NO under microaerobic conditions. We suggest designation of the ygaA-ygaK-ygbD gene cluster as the norRVW modulon for NO reduction and detoxification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.