Abstract

We discuss the phenomenology of effective field theories with new scalar or vector representations of the Standard Model quark flavor symmetry group, allowing for large flavor breaking involving the third generation. Such field content can have a relatively low mass scale \lesssim TeV and O(1) couplings to quarks, while being naturally consistent with both flavor violating and flavor diagonal constraints. These theories therefore have the potential for early discovery at LHC, and provide a flavor safe "tool box" for addressing anomalies at colliders and low energy experiments. We catalogue the possible flavor symmetric representations, and consider applications to the anomalous Tevatron t-tbar forward backward asymmetry and B_s mixing measurements, individually or concurrently. Collider signatures and constraints on flavor symmetric models are also studied more generally. In our examination of the t-tbar forward backward asymmetry we determine model independent acceptance corrections appropriate for comparing against CDF data that can be applied to any model seeking to explain the t-tbar forward backward asymmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call