Abstract

The interaction between flavors and proteins results in a reduced headspace concentration of the flavor, affecting flavor perception. We analyzed the retention of a series of esters and ketones with different chain lengths (C4, C6, C8, and C10) by protein isolates of yellow pea, soy, fava bean, and chickpea, with whey as a reference. An increase in protein concentration led to a decrease in flavor compound in the headspace as measured with atmospheric pressure chemical ionization time-of-flight mass spectroscopy (APCI-TOF-MS). Flavor retention was described with a flavor-partitioning model. It was found that flavor retention could be well predicted with the octanol-water partitioning coefficient and by fitting the hydrophobic interaction parameter. Hydrophobic interactions were highest for chickpea, followed by pea, fava bean, whey, and soy. However, the obtained predictive model was less appropriate for methyl decanoate, possibly due to its solubility. The obtained models and fitted parameters are relevant when designing flavored products with high protein concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.