Abstract

Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The MSW effect would imprint on SN neutrinos a track of the shock-wave propagation and of the matter turbulences in the stellar envelope. Moreover, the neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I will present the recent results on supernova neutrino flavor conversions and I will discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call