Abstract
To study the physicochemical properties of micro-nanoparticles (MNPs) in thermoultrasonic treated fishbone soup, it was subjected to ultra-filtration with a 100kDa ultrafiltration membrane to obtain large MNPs (LMNPs) and small MNPs (SMNPs). LMNPs and SMNPs were treated with force-breakers, and the interactions of the MNPs with five characteristic volatile compounds were investigated. LMNPs covered most proteins (222.66mg/mL) and fatty acids (363.76mg/g), while SMNPs was mostly soluble small molecules with taste substances like total free amino acids (85.26mg/g), organic acids (2.55mg/mL), and 5'-nucleotides (169.17mg/100mL). The stability of LMNPs is significantly higher than raw bone soup, and SMNPs can exist stably in the solution. Correlation analysis between flavor substance content and flavor suggested that the overall flavor profile of halibut bone soup was closely related to the content changes of 72 significant influence variables. The binding of LMNPs to characteristic flavor compounds was largely affected by hydrophobic interactions, hydrogen bonds, and ionic effects. While the binding of SMNPs to characteristic flavor compounds was largely determined by hydrophobic interaction and hydrogen bonding. This study explores the characteristics of MNPs and provides the possibility to clarify the interaction mechanism between MNPs and flavor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.