Abstract

The smallness of fermion masses and mixing angles has recently been been attributed to approximate global $U(1)$ symmetries, one for each fermion type. The parameters associated with these symmetry breakings are estimated here directly from observed masses and mixing angles. It turns out that although flavor changing reaction rates may be acceptably small in electroweak theories with several scalar doublets without imposing any special symmetries on the scalars themselves, such theories generically yield too much CP violation in the neutral kaon mass matrix. Hence in these theories CP must also be a good approximate symmetry. Such models provide an alternative mechanism for CP violation and have various interesting phenomenological features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.