Abstract

Flavopiridol, a synthetic flavone closely related to a compound originally isolated from the stem bark of the native Indian plant Dysoxylum binectariferum, has been found to inhibit cyclin-dependent kinases, induce apoptosis, suppress inflammation, and modulate the immune response. Because several genes in which expression is altered by flavopiridol are regulated by NF-kappaB, we propose that this flavone must affect the activation of NF-kappaB. For this report, we investigated the effect of flavopiridol on NF-kappaB activation by various carcinogens and inflammatory agents. Flavopiridol suppressed tumor necrosis factor (TNF)-activation of NF-kappaB in a dose- and time-dependent manner in several cell types, with optimum inhibition occurring upon treatment of cells with 100 nm flavopiridol for 6 h. This effect was mediated through inhibition of IkappaBalpha kinase, phosphorylation, ubiquitination, and degradation of IkappaBalpha (an inhibitor of NF-kappaB), and suppression of phosphorylation, acylation, and nuclear translocation of the p65 subunit of NF-kappaB. Besides TNF, flavopiridol also suppressed NF-kappaB activated by a carcinogen (cigarette smoke condensate), tumor promoters (phorbol myristate acetate and okadaic acid), and an inflammatory agent (H2O2). TNF-induced NF-kappaB-dependent reporter gene transcription was also suppressed by this flavone. NF-kappaB reporter activity induced by TNF receptor 1, TNF receptor-associated death domain, TNF receptor-associated factor-2, NF-kappaB-inducing kinase, and IkappaBalpha kinase, were all blocked by flavopiridol but not that activated by p65. Furthermore, flavopiridol suppressed TNF-induced activation of Akt. Flavopiridol also inhibited the expression of the TNF-induced NF-kappaB-regulated gene products cyclin D1, cyclooxygenase-2, and matrix metalloproteinase-9. Overall, our results indicated that flavopiridol inhibits activation of NF-kappaB and NF-kappaB-regulated gene expression, which may explain the ability of flavopiridol to suppress inflammation, modulate the immune response, and regulate cell growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.