Abstract

Patients with chronic lymphocytic leukemia (CLL) with high-risk cytogenetic features such as del(17p13) have limited treatment options and decreased overall survival. Dysfunction of p53 leads to resistance to fludarabine-based therapies. Cyclin-dependent kinase inhibitors (CDKi) are a novel class of agents that induce apoptosis in CLL cells independent of p53 mutational status. The synthetic flavone flavopiridol demonstrated promising in vitro activity in CLL. In initial phase I studies using a continuous infusion dosing schedule in a variety of malignancies, no clinical activity was observed. Detailed pharmacokinetic modeling led to the development of a novel dosing schedule designed to achieve target drug concentrations in vivo. In phase I testing, this dosing schedule resulted in acute tumor lysis syndrome (TLS) as the dose-limiting toxicity. With the implementation of a standardized protocol to prevent severe TLS, flavopiridol was administered safely, and responses were observed in heavily pretreated, fludarabine-refractory patients, cytogenetically high-risk patients, and patients with bulky lymphadenopathy. In a pharmacokinetic analysis, flavopiridol area under the plasma concentration-time curve (AUC) correlated with clinical response and cytokine release syndrome. Phase II studies are under way with encouraging preliminary results. Flavopiridol is currently under active investigation in combination with other agents and as a means to eradicate minimal residual disease in patients following cytoreductive chemotherapy. Several other investigational CDKi in preclinical and early clinical development are briefly discussed in this review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call