Abstract

• The flavonol-based small-molecule fluorescent probes are reviewed. • ƒÜ The unique photophysical process of flavonol and its advantages in probe design are introduced. • ƒÜ The design mechanism of flavonol-based fluorescent probes has been discussed and categorized. • ƒÜ The sensing performances and applications of probes are summarized. Flavonols, named as 3-hydroxyl-2-phenyl-1-benzopyran-4-one, are important natural botanical functional pigments widely distributing in fruits, vegetables, and flowers. Owing to intramolecular hydrogen bond, the flavonols can undergo the excited-state intramolecular proton transfer (ESIPT) process upon irradiation, leading to unique environmental-sensitive dual emissions, which makes flavonol an ideal fluorophore skeleton for probe design. In this paper, we summarized the recent progress of flavonol-based small-molecule fluorescent probes for diverse sensing applications, including detection of anions, cations, reactive biological species, proteins, DNAs, environmental hazards, and microenvironmental factors. This review highlighted the basic characteristics of flavonol probes in the respect of design principles, photophysical processes, sensing mechanism, sensing performances, and biological applications. The present review article aims to offer a comprehensive summary for researchers to inspire new probe design, and push forward the advancement of flavonol-based fluorescent probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.