Abstract

In this study, systematic separation and subsequent pharmacological activity studies were carried out to identify cytotoxic natural products from the dried stems of Millettia pachyloba Drake. Five previously undescribed isoflavones, pachyvones A–E; one previously undescribed xanthone, pachythone A; and twenty-two known compounds were obtained. The structures of these compounds were assigned on the basis of 1D/2D NMR data and high-resolution electrospray ionization mass spectroscopy analysis. Preliminary activity screening with HeLa and MCF-7 cells showed that ten compounds (3–5, 9, 12, 17–19, 24, and 25) had potential cytotoxicity. Further in-depth activity studies with five cancer cell lines (HeLa, HepG2, MCF-7, Hct116, and MDA-MB-231) and one normal cell line (HUVEC) revealed that these ten compounds showed specific cytotoxicity in cancer cells, with IC50 values ranging from 5 to 40 μM, while they had no effect on normal cell lines. To investigate whether the cytotoxicity of these ten compounds was associated with autophagy, their autophagic effects were evaluated in GFP-LC3-HeLa cells. The results demonstrated that compound 9 (durmillone) significantly induced autophagy in a concentration-dependent manner and had the best activity as an autophagy inducer among all of the compounds. Therefore, compound 9 was selected for further study. The PI/Annexin V double staining assay and Western blotting results revealed that compound 9 also induced obvious apoptosis in HeLa and MCF-7 cells, which suggests that it mediates cytotoxic activity through activation of both apoptosis and autophagy. Taken together, this study identified ten natural cytotoxic products from the dried stems of Millettia pachyloba Drake, of which compound 9 induced apoptosis and autophagy and could be an anticancer drug candidate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call