Abstract

Seven structurally diverse flavonoids have been shown to decrease glucose-6-phosphate dehydrogenase (G6PDH) inactivation in 0.1 M phosphate buffer (pH 7.4), induced by exposure to a high temperature (44 degrees C), or by a low-frequency ultrasound (27 kHz, 60 Wt/cm2). The activity of the compounds was assessed by their ability to change effective first-order rate constants characterizing the total (thermal and ultrasonic), thermal, and ultrasonic inactivation of 2.5 nM G6PDH (k(in), k(in)* [Russian characters: see text] kin(us), respectively). The value dependences of these constants on flavonoid concentrations (0.01-50 microM) were obtained. Rank order of potency exhibited by the compounds in protecting G6PDH appeared as follows: hesperidin > morin > silibin > naringin = quercetin > kampferol >> astragalin. The data obtained confirm the crucial role of free radicals formed in the field of ultrasonic cavitation (HO* and O2*-) in G6PDH inactivation in solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.