Abstract

Ethnopharmacological relevanceDifferent parts of Eugenia dysenterica have been popularly used in Brazil for treating diabetes mellitus and its complications. The present study aimed to screen extracts from E. dysenterica fruit pulp, peel, seed and leaf for carbohydrate digestive enzymes inhibitors with antioxidant and anti-glycation capacities. Materials and methodsEthanol extracts of E. dysenterica were subjected to a liquid-liquid fractionation and the fractions were used to evaluate their antioxidant properties and inhibitory potential against the formation of advanced glycation end-products (AGEs) and α-amylase and α-glucosidase. ResultsThe ethyl acetate fraction (EtOAcF) from seed and the dichloromethane fraction (CH2Cl2F) and EtOAcF from leaf had high antioxidant capacities (ORAC >5500 μmol trolox eq g-1, FRAP >1500 μmol trolox eq g-1 and DPPH IC50 < 35 μg mL-1) and showed exceptional inhibitory activities against AGEs formation (glycation inhibition above 80% at 10 μg mL-1) and α-amylase and α-glucosidase (inhibition above 50% at 10 μg mL-1). The gallated B-types proanthocyanidins were the most active ingredients found in the leaf of E. dysenterica (CH2Cl2 and EtOAcF), being responsible for the notorious inhibitory effects against glycation and glycoside hydrolases due to their ortho-hydroxyl groups, which play role in scavenge and quench free radicals and glycated products, and may occupy the enzymes’ substrate binding pocket. Furthermore, gallic acid, quercetin and its glycoside derivatives were detected by the first time in the E. dysenterica fruit seed (EtOAcF). ConclusionsThe results strongly contribute to the understanding of the antidiabetic potential of seeds and leaves from E. dysenterica, a species from a global biodiversity hotspot, which appears to be linked to the prevention of oxidative stress, AGEs production and postprandial hyperglycemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.