Abstract

Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.

Highlights

  • The use of nitrogen by plants involves several steps, including uptake, assimilation, translocation, and different forms of recycling and remobilization processes, all of them of crucial importance in terms of nitrogen utilization efficiency

  • The study of the response of L. japonicus to abiotic stress conditions led to different novel findings, such as the accumulation of new flavonols that were described for the first time in

  • Despite the important role played by L. japonicus in elucidating the molecular genetics of legume–rhizobia symbiosis, it is still unknown which class of phenolic compounds are used by this species in order to attract its chosen symbiont [15]

Read more

Summary

Introduction

The use of nitrogen by plants involves several steps, including uptake, assimilation, translocation, and different forms of recycling and remobilization processes, all of them of crucial importance in terms of nitrogen utilization efficiency. Different processes exist in plants, which give rise to the production of endogenous sources of ammonium which have to be efficiently re-assimilated by secondary ammonium assimilation These processes include photorespiration, the biosynthesis of phenylpropanoids, as well as ureide, nucleotide and amino acid catabolism [1]. Flavonoids and isoflavonoids, which are compounds lacking nitrogen in their structures, are postulated to play pivotal roles in the adaptation of legumes to their biological environments both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia [13]. A primary function of flavonoids in legume–rhizobia symbiosis is to induce transcription of the genes involved in the biosynthesis of Nod factors These factors are rhizobial signaling molecules perceived by the plant to allow symbiotic infection of the root. The impact that these studies may have to improve cultivated legumes of great agronomic importance such as soybean (Glycine max)

Flavonoid and Isoflavonoid Biosynthetic Pathways in Lotus
Co-Expression Analysis of Potential MYB Regulatory Genes in Lotus japonicus
Findings
Conclusions and Future Prospects
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call