Abstract
Sesame leaves contain rich phenolic acids and flavonoids. However, their potential in nanozyme synthesis has not been investigated yet. Herein, we report the preparation of flavonoid-rich sesame leaf extract (SLE), composition identification, and its use in the construction of iron (Fe)-based nanozymes (Fe-SLE CPNs). SLE was obtained with an extraction yield of ∼14.5% with a total flavonoid content (TFC) of ∼850.85 mg RE/g. There were 83 flavonoid compounds in SLE, primarily including scutellarin, apigenin-7-glucuronid, narcissin, and hyperoside. Fe-SLE CPNs exhibited nanodot morphology with a hydrodynamic size of 79.34 nm and good stability in various physiological solutions, pH levels, and temperatures. The Fe-SLE CPNs were more efficient in the scavenging ability of reactive oxygen species (ROS) than SLE alone. Furthermore, a stronger anti-inflammatory effect of the Fe-SLE CPNs was shown by modulating the MyD88-NF-κB-MAPK signaling pathways. These findings imply that SLE-based nanozymes hold great potential for diverse applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.