Abstract

(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated to increase the outcrossing rate of soybean CMS lines; (2) Methods: The male-sterile soybean lines JLCMS313A (with a high outcrossing rate; HL) and JLCMS226A (with a low outcrossing rate; LL) were used for a combined analysis of the transcriptome (RNA-seq) and the targeted phenol metabolome; (3) Results: The comparison between HL and LL detected 5946 differentially expressed genes (DEGs) and 81 phenolic metabolites. The analysis of the DEGs and differentially abundant phenolic metabolites identified only one common KEGG pathway related to flavonoid biosynthesis. The qRT-PCR expression for eight DEGs was almost consistent with the transcriptome data. The comparison of the cloned coding sequence (CDS) regions of the SUS, FLS, UGT, and F3H genes between HL and LL revealed seven single nucleotide polymorphisms (SNPs) only in the F3H CDS. Moreover, five significant differentially abundant phenolic metabolites between HL and LL were associated with flavonoid metabolic pathways. Finally, on the basis of the SNPs in the F3H CDS, one derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to distinguish between HL and LL soybean lines; (4) Conclusions: The flavonoid biosynthesis pathway may indirectly affect the outcrossing rate of CMS sterile lines in soybean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.