Abstract

Tyrosinase 저해활성화 반응에 대한 polyhydroxy 치환된 flavone 유도체(1-25) 중, hydroxyl-치환기(<TEX>$R_1-R_9$</TEX>)들의 역할을 이해하기 위하여 Free-Wilson 분석과 tyrosinase (PDB ID: Deoxyform (2ZMX) 및 Oxy-form; 1WX2)의 활성화 지점에 대한 분자도킹이 연구되었다. Free-Wilson 분석으로부터 <TEX>$R_1-R_9$</TEX> 치환기중에서 <TEX>$R_1$</TEX>=hydroxyl 치환기가 tyrosinase 저해활성에 가장 큰 영향을 미치고 있음을 알았다. 기질분자의 hydroxyl 치환기들과 tyrosinase의 반응점 내 아미노산 잔기들 사이의 수소결합들은 안정한 기질-수용체 착 화합물을 형성하는데 기여하였다. 특히, 수소결합성에 기초한 비경쟁적 저해활성화 반응은 기질분자의 hydroxyl 치환기들과 tyrosinase의 반응점 내 peroxide 산소원자(Per404) 사이의 수소결합을 경유하여 일어날 것임을 제안하였다. Molecular docking of polyhydroxy substituted flavone analogues (1-25) as substrate molecules to the active site of tyrosinase (PDB ID: Deoxy-form (2ZMX) & Oxy-form (1WX2)) and Free-Wilson analysis were studied to understand the roles of hydroxyl substituents (<TEX>$R_1-R_9$</TEX>) in substrate molecules for the tyrosinase inhibitory activation. It is founded from Free-Wilson analysis that the <TEX>$R_1$</TEX>=hydroxyl among <TEX>$R_1-R_9$</TEX> substituents had the strongest influence on the tyrosinase inhibitory activity. H-bonds between the hydroxyl substituents of substrate molecules and amino acid residues in the active site of tyrosinase were contributed to make a stable substrate-receptor complex compound. Particularly, it is proposed from the findings that the noncompetitive inhibitory activation would take place via H-bonding between peroxide oxygen (Per404) atom in the active site of tyrosinase and the hydroxyl substituents in substrate molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.