Abstract
In leptonic flavour models with discrete flavour symmetries, couplings between flavons and leptons can result in special flavour structures after they gain vacuum expectation values. At the same time, they can also contribute to the other lepton-flavour-violating processes. We study the flavon-induced LFV 3-body charged lepton decays and radiative decays and we take as example the $A_4$ discrete symmetry. In $A_4$ models, a $Z_3$ residual symmetry roughly holds in the charged lepton sector for the realisation of tri-bimaximal mixing at leading order. The only processes allowed by this symmetry are $\tau^-\to \mu^+ e^- e^-, e^+ \mu^- \mu^-$, and the other 3-body and all radiative decays are suppressed by small $Z_3$-breaking effects. These processes also depend on the representation the flavon is in, whether pseudo-real (case i) or complex (case ii). We calculate the decay rates for all processes for each case and derive their strong connection with lepton flavour mixing. In case i, sum rules for the branching ratios of these processes are obtained, with typical examples $\text{Br}(\tau^-\to \mu^+ e^- e^-) \approx \text{Br}(\tau^-\to e^+ \mu^- \mu^-)$ and $\text{Br}(\tau^-\to e^- \gamma) \approx \text{Br}(\tau^-\to \mu^- \gamma)$. In case ii, we observe that the mixing between two $Z_3$-covariant flavons plays an important role. All processes are suppressed by charged lepton masses and current experimental constraints allow the electroweak scale and the flavon masses to be around hundreds of GeV. Our discussion can be generalised in other flavour models with different flavour symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.