Abstract

The guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5:UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5:UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL (Molecule Interacting with CasL) also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL. Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD axon guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance.

Highlights

  • The formation of neural circuits during development depends on the guidance of growing axons to their proper synaptic targets

  • Based on the function of the flavoprotein monooxygenase (FMO)-containing MICAL molecules in Drosophila and vertebrates, we speculate that the FMOs might directly oxidize actin, leading to filament disassembly and collapse, and/or lead to the phosphorylation of UNC-33/Collapsin response mediating proteins (CRMPs), which we show genetically interacts with the FMOs downstream of UNC-6/Netrin

  • We find that fmo-1, fmo-4, fmo-5 and ehbp-1 mutants display pathfinding defects of the dorsally-directed VD/DD motor neuron axons that are repelled by UNC-6/Netrin, and that they interact genetically with unc-40 and unc-5

Read more

Summary

Author summary

Mechanisms that guide axons to their targets in the developing nervous system have been elucidated, but how these pathways affect behavior of the growth cone of the axon during outgrowth remains poorly understood. We show that FMOs are normally required for axon guidance and to inhibit growth cone protrusion. Based on the function of the FMO-containing MICAL molecules in Drosophila and vertebrates, we speculate that the FMOs might directly oxidize actin, leading to filament disassembly and collapse, and/or lead to the phosphorylation of UNC-33/CRMP, which we show genetically interacts with the FMOs downstream of UNC-6/Netrin. This is the first evidence that FMOs might act downstream of UNC-6/Netrin signaling in growth cone protrusion and axon repulsion

Introduction
Materials and methods
Discussion
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call