Abstract

Atherosclerosis is the major cause for chronic vascular diseases. The key event in the pathogenesis of atherosclerosis is believed to be dysfunction of the endothelium and disruption of endothelial homeostasis, leading to vasoconstriction, inflammation, leukocyte adhesion, thrombosis, and proliferation of vascular smooth muscle cells. Endothelium-derived nitric oxide (NO) plays a major role in vascular homeostasis and a decrease in NO-bioavailability accelerates the development of atherosclerosis. Given that endothelial dysfunction is at least in part reversible, the characterization of endothelial function and therapeutical approaches have gained much attention over the past years. Recent studies demonstrated that especially the consumption of plant-derived foods rich in certain flavonoids can improve endothelial function in both compromised and healthy humans. Furthermore, various physiologic and biochemical measures have been used previously as biomarkers for the assessment of the proposed beneficial effects of flavonoids in this context. More recently, the analysis of plasma nitros(yl)ated species (RXNOs), referred to as the circulating NO pool, has gained recognition, especially as a marker for endothelial function. This review is aimed at evaluating the suitability of quantifying this NO pool as a biomarker for cardiovascular function in humans, in particular during dietary interventions with flavonoid-rich foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.