Abstract

THE flattening of sea-floor depths from the √age dependence predicted by considering the cooling plate as a growing thermal boundary layer is a fundamental constraint on the evolution of oceanic lithosphere1. Previous explanations for the flattening have included reheating from convective instabilities that form beneath lithosphere older than ∼80 Myr (ref. 2), thermal rejuvenation of lithosphere that passes over stationary hotspots3–5, or a whole-mantle flow forced by two converging plates6. We suggest here that the flattening of old ocean floors can perhaps best be explained as a dynamic phenomenon reflecting flow in asthenosphere underlying the oceanic lithosphere. Applying the model to the Pacific plate, we show that a solution for flow in an asthenosphere low-viscosity channel which is 'consumed' by plate accretion and the subduction of lithosphere at trenches, and replenished by near-ridge upwelling and near-ridge hotspots, generates the observed ∼ 1 km of sea-floor flattening for asthenospheric viscosities of 2 × 1018 Pa s and an absolute Pacific plate motion of 100 mm yr−1. Our model can also explain the asymmetric subsidence of the South American and African plates away from the Mid-Atlantic Ridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.