Abstract

Embedded control units for transportation systems make use of advanced nonlinear control methods. In this research article a new nonlinear control method is applied to spark ignited (SI) engines. The proposed SI engine's control scheme is based on differential flatness theory The considered method succeeds the efficient control of the SI engine parameters such as intake pressure and turn speed. The method makes use of a state-space model of the SI-engine in the so-called triangular form. The controller design proceeds by showing that each row of the state-space model of the SI engine stands for a differentially flat system, where the flat output is chosen to be the associated state variable. Next, for each subsystem which is linked with a row of the state-space model, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input that is actually applied to the SI engine is found. This control input contains recursively all virtual control inputs which were computed for the individual subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the SI-engine so as to assure that all its state vector elements will converge to the desirable setpoints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call