Abstract
Under the assumption that a residually finite-dimensional Hopf algebra H has an Artinian ring of fractions, it is proved that H is a flat module over any right coideal subalgebra satisfying a polynomial identity and is faithfully flat over any polynomial identity Hopf subalgebra. As a consequence we find a large class of Hopf algebras which are flat over all coideal subalgebras and are faithfully flat over all Hopf subalgebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.