Abstract

Rhythms, and specially circadian rhythms governed by an oscillating set of genes called the central clock, and their incidence on therapeutics, have become an important concern in biology and medicine. Restoration of altered rhythms for therapeutic purpose can be viewed as an open-loop control problem. We study in this paper a nonlinear oscillator modeling the central clock mechanism through the synthesis cycle of PER protein for fruit fly Drosophila. Its particularly robust bifurcation structure makes it representative for a wide number of oscillating biological systems. We show how classical flatness-based motion planning techniques allow for fast design of chronomodulated injection schemes achieving circadian rhythm restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.