Abstract

Possibility of flat-band ferromagnetism in quantum dot arrays is theoretically discussed. By using a quantum dot as a building block, quantum dot superlattices are possible. We consider dot arrays on Lieb and kagome lattices known to exhibit flat band ferromagnetism. By performing an exact diagonalization of the Hubbard Hamiltonian, we calculate the energy difference between the ferromagnetic ground state and the paramagnetic excited state, and discuss the stability of the ferromagnetism against the second nearest neighbor transfer. We calculate the dot-size dependence of the energy difference in a dot model and estimate the transition temperature of the ferromagnetic-paramagnetic transition which is found to be accessible within the present fabrication technology. We point out advantages of semiconductor ferromagnets and suggest other interesting possibilities of electronic properties in quantum dot superlattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.