Abstract

The thermodynamic stability of dichromium carbonyls is investigated with density functional theory (DFT). The results demonstrate why [(μ-H)Cr2(CO)10]- has been observed while the Cr2(CO)11 and (μ-H)2Cr2(CO)9 structures remain unknown. The related structure [(μ-H)2Cr2(CO)8]2- is predicted to be stable with respect to its fragments and isolable. Homoleptic chromium carbonyl structures of the formula Cr2(CO)11 appear to be thermodynamically unstable with respect to dissociation to the fragments Cr(CO)6 and Cr(CO)5 and only slightly metastable with respect to the transition state leading to these dissociated fragments. The potential energy surface in the region adjacent to these minima appears to be very flat. In contrast, both the BP86 and B3LYP functionals predict the known [(μ-H)Cr2(CO)10]- to have significant stability with respect to the fragments Cr(CO)5 + [Cr(CO)5H]-. For the B3LYP functional, the dissociation energy is 41 kcal/mol, while for BP86 it is 43 kcal/mol. A notable structural difference for...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.