Abstract

Possibility of turbulent skin-friction reduction in an incompressible boundary layer of a flat plate with air blowing through a microperforated surface consisting of alternating permeable and impermeable sections was studied experimentally and computationally. The mass flow rate of the air per unit area was varied in the range from 0 to 0.0709 kg/s/m2 , which corresponds to the maximum blowing coefficient equal to 0.00344. A consistent reduction of the local skin-friction values along the chord of the microperforated insert was found, the reduction achieving nearly 70 % at the end of the last active blowing sections, except the impermeable surface sections demonstrating, on the contrary, the skin friction increase: the longer section, the higher skin friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.