Abstract
Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.