Abstract

ZrSiS exhibits a frequency-independent interband conductivity σ(ω)=const(ω)≡σ_{flat} in a broad range from 250 to 2500 cm^{-1} (30-300meV). This makes ZrSiS similar to (quasi-)two-dimensional Dirac electron systems, such as graphite and graphene. We assign the flat optical conductivity to the transitions between quasi-two-dimensional Dirac bands near the Fermi level. In contrast to graphene, σ_{flat} is not universal but related to the length of the nodal line in the reciprocal space, k_{0}. Because of spin-orbit coupling, the discussed Dirac bands in ZrSiS possess a small gap Δ, for which we determine an upper bound max(Δ)=30 meV from our optical measurements. At low temperatures the momentum-relaxation rate collapses, and the characteristic length scale of momentum relaxation is of the order of microns below 50K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.