Abstract
We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flat modules and we deduce, using a recent result of \v{S}aroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod-R unless R is right perfect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.