Abstract

Structural health monitoring (SHM) represents the next generation of carbon fiber‐reinforced composite nondestructive testing. One challenge facing the application of magnetostrictive SHM is the lightweighting and ease of installation of actuators and sensors. Inkjet printing (IJP) technology is well suited to produce miniaturized electronic induction sensors that can be paired with magnetostrictive actuators to detect strain. These sensors have several advantages: their thicknesses can be minimized, the surface area can be maximized to increase sensitivity, and complex multifilar coil configurations can be fabricated. A parametric study of the efficacy of IJP induction coils with different parameters (number of coils, monofilar/bifilar, size) tested on a number of actuator‐functionalized composite coupons (FeSiB ribbon and impregnated epoxy sensors) is conducted. The samples are characterized by measuring their inductance response through induced strains. Increased sensitivity and accuracy of the 10‐turn monofilar IJP sensor are shown with respect to 1) 70‐turn hand‐wound coils, 2) a three‐axis AMR sensor, and 3) other IJP actuators with <10 turns. This is attributed to increased contact area to the composite surface and the requirement of minimum sensitivity (i.e., the number of turns and surface area) for strain detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.