Abstract

This chapter develops a general theory of extensions of flat functors along geometric morphisms of toposes; the attention is focused in particular on geometric morphisms between presheaf toposes induced by embeddings of categories and on geometric morphisms to the classifying topos of a geometric theory induced by a small category of set-based models of the latter. A number of general results of independent interest are established on the way, including developments on colimits of internal diagrams in toposes and a way of representing flat functors by using a suitable internalized version of the Yoneda lemma. These general results will be instrumental for establishing in Chapter 6 the main theorem characterizing the class of geometric theories classified by a presheaf topos and for applying it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.