Abstract

In compact local Lipschitz neighborhood retracts in $$\mathbb{R}^n$$ weak convergence for integral currents is equivalent to convergence with respect to the flat distance. This comes as a consequence of the deformation theorem for currents in Euclidean space. Working in the setting of metric integral currents (the theory of which was developed by Ambrosio and Kirchheim) we prove that the equivalence of weak and flat convergence remains true in the more general context of metric spaces admitting local cone type inequalities. These include in particular all Banach spaces and all CAT(κ)-spaces. As an application we obtain the existence of a minimal element in a fixed homology class and show that the weak limit of a sequence of minimizers is itself a minimizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.