Abstract
Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and band gaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions has been pursued with high interest since properties, such as the stabilization of chiral spin textures and nonreciprocal spin-wave propagation, emerge from this antisymmetric exchange coupling. In this context, to further engineer the magnon band structure, we propose the implementation of magnonic crystals with periodic Dzyaloshinskii-Moriya interactions, which can be obtained, for instance, via patterning of periodic arrays of heavy metal wires on top of an ultrathin magnetic film. We demonstrate through theoretical calculations and micromagnetic simulations that such systems show an unusual evolution of the standing spin waves around the gaps. We also predict the emergence of indirect gaps and flat bands, effects that depend on the strength of the Dzyaloshinskii-Moriya interaction. Such phenomena, which have been previously observed in different systems, are observed here simultaneously, opening new routes towards engineered metamaterials for spin-wave-based devices.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.