Abstract

We study disorder-free many-body localization in the flat-band Creutz ladder, which was recently realized in cold-atoms in an optical lattice. In a non-interacting case, the flat-band structure of the system leads to a Wannier wavefunction localized on four adjacent lattice sites. In the flat-band regime both with and without interactions, the level spacing analysis exhibits Poisson-like distribution indicating the existence of disorder-free localization. Calculations of the inverse participation ratio support this observation. Interestingly, this type of localization is robust to weak disorders, whereas for strong disorders, the system exhibits a crossover into the conventional disorder-induced many-body localizated phase. Physical picture of this crossover is investigated in detail. We also observe non-ergodic dynamics in the flat-band regime without disorder. The memory of an initial density wave pattern is preserved for long times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.