Abstract

The selection of appropriate biomaterials that promote cellular adhesion and growth is particularly important for the in vitro reconstruction of neuronal network. This study focused on the development of new polymeric membranes in flat and tubular (hollow-fibre) configurations as novel biomaterials for neuronal outgrowth. Two membrane systems constituted by modified polyetheretherketone (PEEK-WC) and polyacrylonitrile (PAN) membranes were developed and used for the culture of hamster hippocampal neurons. We demonstrated that all investigated membranes supported the adhesion and growth of hippocampal neurons enhancing neuronal differentiation and neurite alignment. The differences in cell behaviours between cells cultured on flat and hollow-fibre (HF) membranes were highlighted by the quantitative analysis of neuronal marker fluorescence intensity, morphometric analysis, RT-PCR analysis and also by metabolic activity measurements. In particular, the PAN HF membranes showed ideal growth culture conditions, guaranteeing adequate levels of metabolic features. Primary hippocampal cells cultured on PAN HF membranes were able to recreate in vitro a 3D neural tissue-like structure that, mimicking the hippocampal tissue, could be used as a tool for the study of natural and pathological neurobiological events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.