Abstract

We present FlashStore, a high throughput persistent key-value store, that uses flash memory as a non-volatile cache between RAM and hard disk. FlashStore is designed to store the working set of key-value pairs on flash and use one flash read per key lookup. As the working set changes over time, space is made for the current working set by destaging recently unused key-value pairs to hard disk and recycling pages in the flash store. FlashStore organizes key-value pairs in a log-structure on flash to exploit faster sequential write performance. It uses an in-memory hash table to index them, with hash collisions resolved by a variant of cuckoo hashing. The in-memory hash table stores compact key signatures instead of full keys so as to strike tradeoffs between RAM usage and false flash read operations. FlashStore can be used as a high throughput persistent key-value storage layer for a broad range of server class applications. We compare FlashStore with BerkeleyDB, an embedded key-value store application, running on hard disk and flash separately, so as to bring out the performance gain of FlashStore in not only using flash as a cache above hard disk but also in its use of flash aware algorithms. We use real-world data traces from two data center applications, namely, Xbox LIVE Primetime online multi-player game and inline storage deduplication, to drive and evaluate the design of FlashStore on traditional and low power server platforms. FlashStore outperforms BerkeleyDB by up to 60x on throughput (ops/sec), up to 50x on energy efficiency (ops/Joule), and up to 85x on cost efficiency (ops/sec/dollar) on the evaluated datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.