Abstract

In swirl stabilized burner, combustion induced vortex breakdown (CIVB) flashback is a significant phenomenon. This paper presents experimental measurements of CIVB flashback propensity for hydrogen (H2)-carbon monoxide (CO) flames. The effects of H2 concentration, and swirl number on the flashback propensity of H2-CO flames are discussed. For a given air mass flow rate, the stoichiometric ratio (%F) at which the CIVB flashback occurs decreases with the increase in H2 concentration in fuel mixtures. However it appears that near the CIVB flashback limit, the swirl strength plays a more dominating role over the H2 concentration in the fuel mixture. The flashback propensity decreases with the increase in swirl number. An analysis of the nonreacting flow field (Air 6 g/s) as well as reacting (CH4-Air and H2-CO-Air) flame near the CIVB transient velocity field was conducted. The analysis revealed that a complex vortex-chemistry interaction leading to vortex breakdown and flashback occurred. The vector flow field showed that the high swirling flow generates a more stabilized and wider recirculation zone. It also showed that the presence of H2 dictates the intensity of the flashback process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.