Abstract

The purpose of this study was to record flash x-ray images of cavitation in human cadaver thighs caused by the passage of high-velocity bullets. The images are an initial step for understanding the cavitation process in human tissue and for implementing a better definition of extensive tissue injury. Bullets were fired through the mid-thighs of 13 cadaver legs. The bullets were of two calibers, 7.62-mm full metal jacket boat tail with strike velocities in the range of 794 m/s to 880 m/s (10 thighs) and 5.70 mm full metal jacket with velocities in the range of 973 m/s to 992 m/s (3 thighs). Short duration (35 ns) x-ray images were recorded at various selected times after the bullets passed near the femurs. This study was carried out at the Armed Forces Institute of Pathology under approved human subject protocols. The cavity sizes and shapes were observed for the two types of bullets and at a number of times during the expansion and collapse of the cavities. As the bullets passed through the thighs, narrow cavities behind the bullets were observed. At later times, large expanded cavities were observed that encompassed the entire mid-thigh region. The observed cavities are at variance with those which were reported previously in gelatin tissue simulants. Flash x-ray radiography is an effective technique for the observation of internal cavitation in cadaver thighs caused by high-velocity bullets. These observations suggest that gelatin is not a proven simulant for human cadaver tissue in the study of cavitation subsequent to high-velocity missile impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.