Abstract

Herein, the mass‐transfer mechanism of flash sintering during the transient stage is examined using an in‐house‐made flash and quench (FQ) system. Visual findings of samples during and after FQ experiments and high‐resolution electron microscopy are given. Many new observations regarding the flash‐sintering nature are presented and discussed. Samples that underwent FQ experiments either show no sign of sintering or local sintering and grain growth due to a hotspot. These findings aid in untying of the two phenomena. Electron microscopy imaging of flash and quenched samples shows atypical microstructures. Such microstructural anomalies include sintering, massive grain growth, and visual findings on the surface. These findings establish flash sintering as a set of phenomena, caused by an abrupt and local increase in temperature (a “flash event”), where only one of which is sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.