Abstract

PurposeRecent studies indicated that ultrahigh dose rate (FLASH) radiation can reduce damage to normal tissue while maintaining anti-tumour activity compared to conventional dose rate (CONV) radiation. This paper provides a comprehensive description of the current status of the Platform for Advanced Radiotherapy Research (PARTER), which serves as the first experimental FLASH platform utilizing megavoltage X-rays and has facilitated numerous experiments. Methods and MaterialsPARTER was established in 2019 based on a superconducting linac to support experimental FLASH studies using megavoltage X-rays. Continuous upgrades have been made to the accelerator, collimators, flattening filters, monitors, other auxiliary devices, and irradiation process in order to achieve optimal results. Passive and active dosimeters are employed for measuring dose distribution and to ensure traceability of radiation doses. ResultsThe dose monitors and dosimeters demonstrate reliable performance with acceptable stability. At PARTER, the maximum mean dose rate is approximately 400 Gy/s at a surface-source distance of 20 cm (over 1000 Gy/s at smaller distances), with an instantaneous dose rate of approximately 8E5 Gy/s. Both passive and active dosimeters exhibit good linearity and agreement during FLASH X-ray irradiation. The monitors show good linearity to dose rate, with short-term fluctuations within 1.5 % for the diamond monitor. The discrepancy between measured absorbed dose and dose protocol is typically less than 4 %. The X-ray energy spectra on PARTER are comparable to those for megavoltage CONV linacs operating in flattening filter-free mode. The maximum field size of the FLASH beam is 4.5 cm × 4.5 cm. The FLASH dose profile demonstrates satisfactory flatness (1.04) and similar penumbra compared to clinical CONV linac, while the percentage depth dose curve of FLASH X-rays is steeper than that of the clinical megavoltage CONV X-ray. ConclusionsPARTER represents a pioneering platform for conducting megavolts FLASH X-ray irradiation in biological experiments. It effectively fulfills the requirements of preclinical research on megavoltage X-ray FLASH and undergoes continuous upgrades to meet increasingly demanding performance criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call