Abstract
Flash photolysis of 10-diazo-9(10H)-phenanthrenone in aqueous solution was found to give two successively formed transient species and to produce fluorene-9-carboxylic acid as the major reaction product. These transients were identified, through solvent isotope effects and the form of acid−base catalysis, as fluorenylideneketene, formed by photo-Wolff reaction of the diazophenanthrenone, and fluorene-9-carboxylic acid enol, formed by hydration of this ketene. Analysis of the rate profile of the enol ketonization reaction produced the first and second ionization constants for the enol ionizing as an oxygen acid, = 2.01 and = 9.61, respectively. The rate of enolization of fluorene-9-carboxylic acid was also determined, by bromine scavenging, and that, coupled with a literature value of the acidity constant of this acid, allowed evaluation of the two keto−enol equilibrium constants (pKE = 9.67 for interconverting un-ionized carboxylic acid and enol and pK‘E = 8.24 for interconverting singly ionized acid and ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.