Abstract

The obligate phototrophic green alga Chlamydobotrys stellata does not evolve oxygen when grown in CO2-free atmosphere on acetate. With the application of the lipophilic acceptor 2,6-dichloro-p-benzoquinone it was investigated whether this phenomenon is caused by the inactivation of the water-splitting system or by an inhibition of the electron transport chain. It was found that in the presence of DCQ, the photoheterotrophic alga exhibited a normal period-4 flash oxygen pattern, but the steady state yield was only 25% of that measured in the autotrophic cells. After DCQ addition, the initial distribution of S-states and the values of the transition probabilities proved to be the same in the autotrophic and photoheterotrophic algae. These results indicate that photoheterotrophic growth conditions inhibit the electron transport of Chl. stellata behind the acceptor site of DCQ, but the water-splitting system remains active with a reduced oxygen evolving capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.