Abstract

To investigate the effectiveness of infrared (IR) radiation heating in disinfecting air filters loaded with bioaerosols. An irradiation device was constructed considering the unique characteristics of IR and the physical dimensions and radiative properties of air filters. Filters loaded with test bioaerosols were irradiated with the device and flash heated to an ultra-high temperature (UHT). A maximum of 3·77-, 4·38- and 5·32-log inactivation of B. subtilis spores, E. coli, and MS2 virus respectively was achieved within 5 s of irradiation. Inactivation efficiency could be increased by using a higher IR power. Microscopic analysis showed no visible damage from the heat treatment that would affect filtration efficiency. Because the disinfection was a dry heat process, a temperature greater than 200°C was found necessary to successfully inactivate the test micro-organisms. The results demonstrate that IR is able to quickly disinfect filters given sufficient incident power. Compared to existing filter disinfection technologies, it offers a faster and more effective solution. It has been shown that IR heating is a feasible option for filter disinfection; possibly reducing fomite transmission of collected micro-organisms and preventing bioaerosol reaerosolization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.