Abstract

Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30-100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call